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Abstract 

     This paper aims to identify line to ground (LG) fault, in a standalone Wind Energy Conversion 

System (WECS), monitoring the load current spectrums. Firstly, an isolated WECS has been built 

in simulated environment. The load side currents at normal and at LG fault have been recorded 

and analyzed to determine the frequency content of the signal and the magnitude for each 

harmonics present in the system both at normal and at fault. Secondly MRA based DWT analysis 

has been pursued. Significant difference between normal and fault conditions have been observed 

in these values. Later, optimization has been done with respect to DWT levels and statistical 

parameters for fault identification. Based on optimization, an algorithm has been developed for 

fault assessment. The algorithm has been validated with the data obtained from a practical stand-

alone WECS, which gives satisfactory results. Thus this monitoring technique can be suitable for 

effective LG fault detection in standalone WECS. 

Key words 

     Level Optimization, Line to ground fault, MRA based DWT analysis, Parametric 
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1. Introduction 

     Globally wind energy has become a mainstream energy source and an important player in the 
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world’s energy market, which now contributes to the energy mix in more than 70 countries across 

the globe. To retain operational quality of wind energy systems, it is of utmost importance to 

provide predictive and preventive maintenances to the Wind Energy Conversion System 

(WECS). Numerous analyses have been seen in literature for providing maintenance to these 

sorts of systems. A standalone WECS unsymmetrical fault analysis has been done monitoring the 

pattern of MRA of DWT coefficient Skewness and Kurtosis values [1]. Wind Turbine 

aerodynamic asymmetry, rotor furl imbalance, blade imbalance, nacelle-yaw imbalance can be 

monitored using artificial neural network based empirical mode decomposition algorithm in 

Simulink, FAST and TurbSim [2]. Low speed synchronous generator electrical and mechanical 

faults can be identified using wavelet transform based spectral analysis [3]. Typical sensor fault 

in a variable speed wind energy conversion system can be detected using filter residual signal 

based monitoring strategy [4]. Empirical mode decomposition method can be used for extracting 

fault features from the vibrating signal of Wind turbines, wherein trained fusion based classifier 

can be used to disintegrate the faults [5]. Stator inter-turn fault in an excited synchronous 

generator and permanent magnet synchronous generator can be detected using stator current 

signature analysis, monitoring the harmonic frequencies generated in the system at fault [6]. 

Generator temperature prediction and fault identification can be pursued for wind turbine using 

unscented Kalman filter based approach [7]. Gear condition indicator can be used to detect gear 

damage during non-stationary load and speed operating conditions in wind turbines [8]. ATP-

EMTP travelling wave based fault detection has been seen to be done in offshore wind power 

plants, for fault identification in the power cables burned deep into the sea bottom [9]. A method 

has been seen for injecting both positive and negative sequence currents by wind turbines during 

asymmetrical fault, which improves the grid performance in comparison to conventional systems 

[10]. Anomaly detection technique used in SCADA system can be used for online fault detection 

in WECS [11]. A multi-criteria decision making framework using analytic hierarchy process 

(AHP) can be used for fault detection in WTGs [12]. A dynamic model based approach has been 

seen to quantify the severity of upstream mechanical equipment faults in WTGs [13]. None of the 

assessments observed, except [1] deals with the unsymmetrical fault identification in standalone 

or grid interconnected WECS, monitoring the Multi-resolution analysis based Discrete Wavelet 

Transform (MRA of DWT) coefficients, Skewness, Kurtosis values.  

      This is an extended analysis and practical validation of [1] and the motivation of this paper, is 

thus to deal with the line to ground fault detection in standalone WECS, monitoring the MRA of 

DWT decomposition level coefficient’s Skewness, Kurtosis and RMS values. Firstly an isolated 

WECS has been developed in simulation environment [1]. The current signature of the load side 
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has been tracked and analyzed to determine the magnitude of the individual harmonic frequencies 

present in the signal at normal and at fault. Demonstrating the disadvantage of only harmonic 

content monitoring in fault detection, the proposed technique has been applied and accordingly 

feature extraction has been done to distinguish the LG fault in the network. To practically 

authenticate the proposed fault diagnosis, data has been collected at normal and at fault from field 

study and analyzed using the proposed fault diagnosis technique, with satisfactory outcome.  

 

2. Harmonic Detection in the simulated system 

      The load current signature of the developed system [1] has been captured and the harmonic 

frequencies present in the system both at normal and at single line to ground fault has been 

assessed using Discrete Fourier Transform (DFT) [14]. The magnitude for each harmonics 

present in the system at normal and at fault has been determined. The DFT analysis and the 

magnitude of harmonics at normal and fault have been presented in Table 1. In Table 1, “F” 

denotes the frequency content of the signal. 

 

Table 1. Harmonic Assessment of  load side current  

Normal Fault 

F (Hz) Magnitude (dB) F (Hz) Magnitude (dB) 

50 47.03 50 20.71 

78 36.287 117 42.45 

156 25.13 234 35.07 

234 19.82 351.5 30.41 

312.5 13.66 468.5 28.61 

390.5 13.42 585.5 26.33 

468.5 12.16 703 25.35 

546.5 7.71 820 23.64 

625 8.44 937.5 22.61 

703 8.45 1054.5 21.54 

781.25 4.59 1171.5 20.78 

 

      Thus by monitoring the values of Table 1, it is clear that for LG fault in a system, different 

harmonics with dissimilar magnitudes are generated in a system in comparison to healthy 
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condition and thus monitoring these parameters fault can be assessed in a system. But specific 

type of fault identification in a system cannot be done using this technique. Thus a new technique 

of unsymmetrical fault analysis has been proposed in the succeeding sections. 

 

3. LG Fault identification in simulated system 

      The load current, of the simulated system, has been collected both at normal and at LG fault 

in the bus. Both the tracked current signature has been analyzed using Multi-Resolution Analysis 

of Discrete Wavelet Transform (MRA of DWT) [15] algorithm. Here Daubechies 20 mother 

wavelet has been chosen and 5 decomposition levels have been taken into consideration 

depending on the nature of signal obtained. The approximate and detailed coefficient values have 

been analyzed computing the Skewness, Kurtosis and RMS [16-18] values of the coefficients. 

Monitoring the nature of the statistical coefficients, no concrete conclusion about the inception of 

fault in the system can be assessed. Thus for more specific identification, Skewness, Kurtosis and 

RMS value based analysis has been done. Depending on the values obtained, features have been 

extracted for LG fault identification in a system, monitoring the Skewness, Kurtosis and RMS 

values of the decomposition level coefficients as presented in Fig. (s) 2-3. 

 

 
(a)                                                                         (b)                                               

Fig. 2.  Feature extraction monitoring (a) Skewness (b) Kurtosis of approximate and detailed 

coefficients 
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      Fig. 2 (a) shows that, with increase in DWT decomposition level, the Skewness of 

approximate coefficients gradually increases but the nature obtained is not exactly linear. Also 

the Skewness values are greater for LG fault in the system in comparison to healthy condition of 

the network and highest deviation in the coefficient values occur at 5th level of DWT 

decomposition. Observation from Fig. 2 (a) also reveals that, at healthy condition, the Skewness 

of detailed coefficients varies in zigzag nature and the Skewness values are greater in comparison 

to data at fault. However the data at fault has been seen to be decreasing with the increase of 

number of decomposition levels. However, the highest deviation in the values occurs at 2nd level 

of DWT decomposition. Monitoring Fig. 2 (b) it is clear that with increase in number of 

decomposition levels, the Kurtosis of the approximate coefficients at healthy condition gradually 

increases up-to 4th level but abruptly increases in 5th level of decomposition. But in Fig. 2 (b) for 

fault, the Kurtosis of the approximate coefficient values remain more or less same for 1st two 

decomposition levels, decreases for 3rd level, and increases for 4th level which has been seen to 

decrease again for 5th level. Thus the nature is zigzag and the highest deviation occurs at level 5. 

Again in Fig. 2 (b), the healthy Kurtosis of the detailed coefficient values increase for 2nd 

decomposition level and then gradually decrease for increase in number of decomposition levels. 

The data at fault for Kurtosis of the detailed coefficient decreases for 2nd level of decomposition 

remains more or less same for 3rd level of decomposition and gradually increases for increase in 

decomposition levels. Here the highest deviations between healthy and faulty conditions occur at 

2nd level.  

 

 
                                                

Fig. 3.  Feature extraction monitoring RMS of approximate and detailed coefficients 

 

      Observations from Fig. 3 reveal that at healthy and faulty conditions, the RMS of 

approximate coefficients, are more or less similar to each other and seem to linearly increase with 

the increase in number of decomposition levels. The highest deviation between the data at normal 
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and fault occurs at 5th level. Fig. 3 also reveals that the RMS of detailed coefficients for healthy 

condition is greater than that at fault and the values gradually increase with the increase in 

number of decomposition levels. However here also the nature obtained is not exactly linear and 

the highest deviation occurs at 5th level. Depending on the natures obtained, optimization has 

been done as presented in succeeding section.  

 

4. Optimization 

4.1. Level Optimization 

      The natures obtained in Fig. (s) 2-3 have been assessed and features have been extracted for 

maximum deviation assessment as presented in Table 2. In Table 2,
( )

S
NF A

 , 
( )

S
NF D

 denotes 

the deviation in Skewness values for approximate and detailed coefficients between normal and 

fault conditions respectively. 
( )

K
NF A

 ,
( )

K
NF D

  denotes the deviation in Kurtosis values for 

approximate and detailed coefficients between normal and fault conditions respectively. 

( )
R

NF A
 ,

( )
R

NF D
  denotes the deviation in RMS values for approximate and detailed 

coefficients between normal and fault conditions respectively. Monitoring Table 2, it has been 

observed that,
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S
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 ,
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S
NF D

 ,
( )
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 ,
( )

K
NF D

 ,
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 ,
( )

R
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 values are 

maximum at 5th, 2nd, 5th, 2nd, 5th, 5th levels of DWT decomposition respectively. 

 

Table 2.  Maximum deviation analysis from extracted features 

Deviation  Value Highest deviation 

level 

Remarks 

( )
S

NF A
  S

N
- S

F
=-0.03 5th  S

F
> S

N
 

( )
S

NF D
  S

N
- S

F
=2.59 2nd  S

N
> S

F
 

( )
K

NF A
  K

N
- K

F
=0.05 5th  K

N
> K

F
 

( )
K

NF D
  K

N
- K

F
=128.9 2nd  K

N
> K

F
 

( )
R

NF A
  R

N
- R

F
=-25.43 5th  R

F
> R

N
 

( )
R

NF D
  R

N
- R

F
=142.8 5th  R

N
> R

F
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4.2. Parametric Optimization 

      Monitoring Table 2, it has been inferred that the deviation in Skewness values of approximate 

coefficient is negative and hence the data at fault condition is greater than that at normal. The 

deviation in Skewness values of detailed coefficient is positive as a result of which the data at 

normal is greater than that at fault. The deviation in Kurtosis values of both approximate and 

detailed coefficient is positive and hence the data at normal is greater than that at fault. Again for 

RMS values of approximate coefficients, the data at fault is greater than at normal, since the 

deviation in the value has been obtained to be negative and for detailed coefficients, the data at 

normal is greater than the data at fault, as the deviation has been seen to be positive. However, 

monitoring all parameters in Table 2, it has been observed that, the deviation in RMS value of 

detailed coefficients is greatest and the deviation in Kurtosis value of detailed coefficients is also 

very high. Thus these two features can be used as a best fit solution to identify the LG fault in the 

system since the deviation between normal and fault conditions for both of the cases is very high. 

4.3. Algorithm for LG fault detection 

            Depending on the results obtained from Table 2 and optimization done, an algorithm has 

been developed for LG fault identification in stand-alone WECS. The algorithm has been 

presented below: 

Step 1: Record load current. 

Step 2: Depending on the wave nature choose the mostly suitable mother wavelet and number of 

decomposition levels. 

Step 3: Perform MRA based DWT analysis. 

Step 4: Determine deviations as presented in Table 2. 

Step 5: Compare deviation and assess fault. 

To practically authenticate this algorithm, data from a practical WECS has been collected at 

normal and fault, as presented in succeeding sections.  

 

5. Validation 

5.1. Practical system under analysis 

      An industrial standalone WECS has been considered. The network uses a 440 V, 300 kVA 

synchronous machine, a wind turbine driving a 440 V, 300 kVA induction generator, a domestic 

load (10kW), a commercial load (25kW). In this system, data has been collected both for normal 

and for single line to ground fault at load bus of the network.  
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5.2. Harmonic Identification and percentage harmonic distortion calculation with respect to 

fundamental frequency 

      The load current signature of the system developed in laboratory has been captured and the 

harmonic frequencies present in the system both at normal and at single line to ground fault has 

been assessed using DFT. The magnitude of each harmonics present in the system at normal and 

at fault has been determined. The DFT analysis and the magnitude of each harmonic present at 

normal and fault has been presented in Table 3. Thus by monitoring the values of Table 3, it is 

clear that for LG fault in a system, different harmonics with dissimilar magnitudes are generated 

in a system in comparison to healthy condition and thus monitoring these parameters, fault can be 

assessed in a system. Comparing with Table 1, in Table 3 it has also been observed that there is a 

difference between the harmonic frequencies present in the simulated and practical system both 

for normal and fault conditions of the network. Again specific type of fault identification in a 

system cannot be done using this technique. Thus to validate the algorithm developed in Section 

4.3, experimental analysis has been pursued in succeeding sections. 

Table 3. Harmonic Assessment of load side current  

  Normal Fault 

F (Hz) Magnitude (dB) F (Hz) Magnitude (dB) 

50 322.01 50 312.47 

132.5 322.71 125 313.16 

265.5 321.8 250 312.34 

398 314.8 375 305.34 

531 310.9 500 301.41 

664 312.3 625 302.84 

796.5 314.4 750 304.9 

929.5 311.6 875 302.1 

1062.5 308.5 1000 298.9 

1195 315.2 1125 305.6 

1328 311.6 1250 302.1 

5.3. Line to Ground fault analysis in practical system 

The current spectrum of the system at operating condition has been recorded both at healthy 

and at single line to ground fault in the system. These signals have been analyzed using the 

developed MRA of DWT algorithm, wherein the deviation in Skewness, Kurtosis and RMS 
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values have been calculated for the chosen levels as per algorithm specified in Section 4.3. The 

DWT decomposition levels and the approximate and detailed coefficients, for normal and fault 

conditions, have been presented in Fig. 4. Monitoring Fig. 4 (a) it is clear that the coefficient 

values are changing in zigzag pattern and in each decomposition level, the change in the 

coefficient value is clearly visible. Similar nature of the coefficients has been observed for Fig. 4 

(b). But it is worth mentioning that, for Fig. 4 (b) the magnitude of the coefficients is lesser in 

comparison to that at healthy condition, which is clear from individual coefficient monitoring. 

Depending on the deviations obtained from this analysis, assessment has been done for LG fault 

identification in the system. The results obtained after assessing the highest deviation has been 

presented in Table 4.  

 

 

(a)                                                                    (b) 

Fig. 4.  Approximate and Detailed coefficients of DWT decomposition levels of rectifier input 

current at (a) healthy (b) LG fault condition 

Table 4. Deviation in extracted features and percentage difference with optimized results 

Deviation at specified level Value % difference in deviation 

values compared to Table 2 

( ) 5
S

NF A at thlevel
  S

N
- S

F
=-0.0302  

-0.67 

( ) 2
S

NF D at nd level
  S

N
- S

F
=2.62  

-1.15 

( ) 5
K

NF A at th level
  K

N
- K

F
=0.051  

-1.96 

( ) 2
K

NF D at nd level
  K

N
- K

F
=128.88  

-0.02 
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( ) 5
R

NF Aat thlevel
  R

N
- R

F
=-25.9  

-1.8 

( ) 5
R

NF D at thlevel
  R

N
- R

F
=142.77  

-0.02 

 

6. Discussion 

Assessment from Table 4 has been pursued and it has been concluded that the percentage 

deviation in the values obtained in Table 4 in comparison to that in Table 2 is lowest for the 

detailed coefficient Kurtosis and RMS values. Rest of the values has comparatively higher 

percentage deviations with respect to that specified in Table 2. Also the deviation in RMS value 

of detailed coefficient is greatest followed by the deviation in Kurtosis value of detailed 

coefficients. The results of the case study in Table 2 have thus been seen to closely match with 

that presented in Table 4 and thus the algorithm presented in Section 4. 3 have been validated. 

Thus Kurtosis and RMS value of detailed coefficients can be effectively used for fault 

identification with least operating error in a system. In this paper analysis has been shown for the 

acquired current spectrum of the Red-phase only. 

 

7. Conclusion 
 

This paper describes the shortfall of only harmonic magnitude analysis for LG fault 

identification in a system and presents a new technique for LG fault identification in stand-alone 

WECS, monitoring the Kurtosis and RMS values of the MRA based DWT coefficients for 

optimized levels. Features have been extracted from the deviation in the Skewness, Kurtosis and 

RMS values of MRA based DWT coefficients at normal and at fault. Depending on the 

maximum deviation of the coefficients from normal at fault, level and parametric optimizations 

have been done to identify the best fit solution for LG fault identification in a system. Validation 

of the work has been done in an industrial stand-alone WECS and the two results have been 

cross-checked. The percentage error between the results obtained from both the assessments has 

been seen to be below 2%. Thus, it can be concluded that, this analysis can be fruitfully applied 

for LG fault identification in a stand-alone Wind Energy Conversion System with least 

operational error. However this analysis has also been extended for other fault identification in 

traction systems and transmission and distribution systems with more or less similar results. 
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